康奇宇
个人简介
电子工程与信息科学系特任教授,博士生导师,国家青年人才。2020年获南洋理工大学博士学位并从事博士后研究工作,2024年加入中科大。主要研究方向为机器学习的理论研究和技术开发工作,研究领域涉及微分方程与机器学习、大模型与通用人工智能、类脑智能等。担任ELSEVIER Signal Processing期刊编委,多个机器学习顶级会议及期刊程序委员、审稿人等职务,曾担任智能交通顶级会议ITSC专题研讨会主席,并受邀在多个国际会议作学术报告。在NeurIPS、ICML、ICLR、AAAI、IJCAI、CVPR、IEEE TIP、IEEE TKDE等领域高水平学术期刊及国际会议上发表论文30余篇,其中CCF A类会议和期刊长文20余篇。主持多项国家自然科学基金等科研项目。
研究方向
- 深度学习安全可信问题。 
- 物理动力系统与机器学习。 
- 大模型高效计算问题。 
- 类脑智能。 
联系方式
办公地点:高新校区一号学科楼A508
电子邮箱:qiyukang@ustc.edu.cn
个人主页:https://faculty.ustc.edu.cn/kangqiyu/
代表性论文
- Q. Kang, X. Li, K. Zhao, W. Cui, Y. Zhao, W. Deng, and W. P. Tay,“Efficient training of neural fractional-order differential equation via adjoint backpropagation," Proc. AAAI Conference on Artificial Intelligence (AAAI), Philadelphia, USA, Feb. 2025. 
- Q. Kang, K. Zhao, Q. Ding, F. Ji, X. Li, W. Liang, Y. Song, and W. P. Tay, “Unleashing the potential of fractional calculus in graph neural networks with FROND,”Proc. International Conference on Learning Representations (ICLR), Vienna, Austria, May 2024, Spotlight. 
- K. Zhao, X. Li, Q. Kang†, F. Ji, Q. Ding, Y. Zhao, W. Liang, and W. P. Tay, “Distributed-order fractional graph operating network,” Advances in Neural Information Processing Systems (NeurIPS), Vancouver, Canada, Dec. 2024, Spotlight. 
- Q. Kang, K. Zhao, Y. Song, Y. Xie, Y. Zhao, S. Wang, R. She, and W. P. Tay, “Coupling graph neural networks with fractional order continuous dynamics: A robustness study,” Proc. AAAI Conference on Artificial Intelligence, Vancouver, Canada, Feb. 2024. 
- K. Zhao, Q. Kang†, Y. Song, R. She, S. Wang, and W. P. Tay, “Adversarial robustness in graph neural networks: A Hamiltonian approach,” Advances in Neural Information Processing Systems (NeurIPS), New Orleans, USA, Dec. 2023, Spotlight. 
- Q. Kang, K. Zhao, Y. Song, S. Wang, and W. P. Tay, “Node embedding from neural Hamiltonian orbits in graph neural networks,” Proc. International Conference on Machine Learning (ICML), Hawaii, USA, Jul. 2023 
- Q. Kang, Y. Song, Q. Ding, and W. P. Tay, “Stable neural ODE with Lyapunov-stable equilibrium points for defending against adversarial attacks,” Advances in Neural Information Processing Systems (NeurIPS), virtual, Dec. 2021. 
- Q. Kang and W. P. Tay, "Task recommendation in crowdsourcing based on learning preferences and reliabilities," IEEE Transactions on Services Computing, vol. 15, no. 4, pp. 1785–1798, 2022. 
